
Security Assessment

Stablecoin Studio
CertiK Assessed on Aug 28th, 2023

Executive Summary

Highlighted Centralization Risks

Initial owner token share is 100% Contract upgradeability Transfers can be paused

Privileged role can mint tokens

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

4 Major 1 Resolved, 3 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

4 Medium 2 Resolved, 2 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

7 Minor 3 Resolved, 4 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

SUMMARY STABLECOIN STUDIO

CertiK Assessed on Aug 28th, 2023

Stablecoin Studio

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

EVM Compatible

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 08/28/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/hashgraph/hedera-accelerator-

stablecoin/tree/main/contracts/contracts

View All in Codebase Page

COMMITS
573b9861882437018fe7974df4a019675db31c31

View All in Codebase Page

21
Total Findings

7
Resolved

0
Mitigated

1
Partially Resolved

13
Acknowledged

0
Declined

https://github.com/hashgraph/hedera-accelerator-stablecoin/tree/main/contracts/contracts

6 Informational 1 Resolved, 1 Partially Resolved, 4 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY STABLECOIN STUDIO

TABLE OF CONTENTS STABLECOIN STUDIO

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Economic model

Findings

CON-09 : Centralization Related Risks

HTM-01 : Initial Token Distribution

RCP-03 : Sum of amounts with different decimals in function `_checkReserveAmount()`

SCF-02 : Contract Upgrade Centralization Risk

CKP-08 : Incorrect return value in `_checkReserveAmount()`

CON-10 : Potential failure of mint

RKP-01 : Admin Role Is Not Strictly Controlled

SCF-01 : Logical issue about the reserve feed

CKP-09 : Third-Party Dependency Usage

CON-03 : Unsafe Integer Cast

CON-04 : Inappropriate Data Type for Parameters and Fields

HRC-01 : Decimals Too Small

HTM-03 : Pull-Over-Push Pattern

RCP-04 : Missing Zero Address Validation

SAC-01 : Missing validations when increase and decrease supplier allowance

CON-05 : Inconsistent Solidity Versions

CON-07 : Redundant Code Components

CON-08 : Incorrect Variable Data Types

CON-11 : Information about `generateKey()`

HTM-02 : Unused Return Variable

HTM-04 : Information about `_hederaTokenManagerAddress`

TABLE OF CONTENTS STABLECOIN STUDIO

Optimizations

CON-06 : Unused State Variable

Appendix

Disclaimer

TABLE OF CONTENTS STABLECOIN STUDIO

CODEBASE STABLECOIN STUDIO

Repository

https://github.com/hashgraph/hedera-accelerator-stablecoin/tree/main/contracts/contracts

Commit

573b9861882437018fe7974df4a019675db31c31

CODEBASE STABLECOIN STUDIO

https://github.com/hashgraph/hedera-accelerator-stablecoin/tree/main/contracts/contracts

AUDIT SCOPE STABLECOIN STUDIO

35 files audited 22 files with Acknowledged findings 13 files without findings

ID Repo File SHA256 Checksum

IWI
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/I

Wipeable.sol

b0f584e762461aa23b89acf06f579d4e3d9c

e94ab93c3807f6ee769467b459d5

BCK
CertiKProject/certik-

audit-projects
contracts/extensions/Burnable.sol

757b7392bf4ef6db7e9bee685bd254687bc

6a822153db11826aa96cd9c1e1175

CIC
CertiKProject/certik-

audit-projects
contracts/extensions/CashIn.sol

0b7661d83e515bf5bc88aa95b584e055754

31ea8749b67368cc709bae9713464

DCK
CertiKProject/certik-

audit-projects
contracts/extensions/Deletable.sol

259f8a528d91123a48ff48ef042e851d004a

992fdcc37fdb5f6eff323ed859d7

FCK
CertiKProject/certik-

audit-projects

contracts/extensions/Freezable.so

l

17bcf2519f78be9ded36b9e15ed413efa3f5

abb9f8cc40f0bef5eecd440fb71a

KYC
CertiKProject/certik-

audit-projects
contracts/extensions/KYC.sol

42b6455996ce31c46e0d73aa256085470df

f9fead668b992d64fb4fce8f4a4b2

PCK
CertiKProject/certik-

audit-projects
contracts/extensions/Pausable.sol

ba9170c8bbe7906420eb1a977feda0217a3

76f516ae68d0b3bf5ab564152e46e

RCK
CertiKProject/certik-

audit-projects

contracts/extensions/Rescatable.s

ol

bf13d0a22f7ecce93eeb2590ad1ecc5dfae5

e34f7c2a59ae11a9dd299db83c65

RCP
CertiKProject/certik-

audit-projects
contracts/extensions/Reserve.sol

470c957320e558a0f9bccf9bb9cb070fa285

0a425b55b59d748e0d252a5dc9d0

RMC
CertiKProject/certik-

audit-projects

contracts/extensions/RoleManage

ment.sol

7ff8d42f7bd4f1ee965dc10b10e911c8eadc2

e8c4b49cedaf5311fd19a004e0c

RKP
CertiKProject/certik-

audit-projects
contracts/extensions/Roles.sol

4c3879ddc89d9925dfa88ddd0cb43a20d34

54062093d3ee0c537d4b53df6439b

SAC
CertiKProject/certik-

audit-projects

contracts/extensions/SupplierAdm

in.sol

c20355974b7eab338991593ceb88c195a5

3c712eb458a6eacd01213ab05be83d

TOC
CertiKProject/certik-

audit-projects

contracts/extensions/TokenOwne

r.sol

c08cfdc1c2ef91a572b0ed52a574842d0c28

53a75df47e53aa29134c7f397368

AUDIT SCOPE STABLECOIN STUDIO

ID Repo File SHA256 Checksum

WCK
CertiKProject/certik-

audit-projects
contracts/extensions/Wipeable.sol

d5ae02a8418a01f5bfa34e2ff640f3951c3bff

1b24a285d89754c21f1e30034e

IHT
CertiKProject/certik-

audit-projects

contracts/Interfaces/IHederaToke

nManager.sol

fe26b2be5a27cb70c8f1299486848a6a97b

618a334ceda7cf3752f04ccdc3335

ISC
CertiKProject/certik-

audit-projects

contracts/Interfaces/IStableCoinF

actory.sol

b006283df0807c36ad97197f8cbcd59f52bc

26b1012cf09a052899bbb55f319b

HRK
CertiKProject/certik-

audit-projects

contracts/hts-precompile/HederaR

esponseCodes.sol

8b9e4ab063b4ccb2d26b3965f25ab087b7d

eef9844486c566d114e0607921020

IHS
CertiKProject/certik-

audit-projects

contracts/hts-precompile/IHedera

TokenService.sol

7844928f9c85d5958ba4f7604d6ae88aa4e

40da9057a1b1ac281463c30b16a9d

KLC
CertiKProject/certik-

audit-projects
contracts/library/KeysLib.sol

c7261f18a295946e64ae1e32e4fd08deea0

08a3c0d7ee82a707a736eb4c80e4c

HRC
CertiKProject/certik-

audit-projects
contracts/HederaReserve.sol

6fb82a45f92c3dbce0d1cdee3112a2c6c930

30a06f93eb1807d084800ec7b144

HTM
CertiKProject/certik-

audit-projects

contracts/HederaTokenManager.s

ol

602082c768d41b05455c5d0adc824c94a13

a9e90ff03081140ed479f34a59359

SCF
CertiKProject/certik-

audit-projects
contracts/StableCoinFactory.sol

20c9fce832596ff78a71416cfe3a9fbce0346

4a3be70c99184e39fc8e6a16280

IBI
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IB

urnable.sol

8abcd2329e2923bc898798aefa7bd216b34

b31c16488d7a85202209faf12a6c6

ICI
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IC

ashIn.sol

f09646b882fa4797c61cb25d2e8a98d0be1

d085a550785ce4f2b5c24f20416f5

IDI
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/ID

eletable.sol

42e71b48725543321ea27829024622a26d

2df0e92ae9ae78a9ca81d4381e62b5

IFI
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IF

reezable.sol

d9dd56ef77afdfff2b3ab4d311ec90ab8f7d4

58db0f3a57a2f7bc167baf6f368

IKY
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IK

YC.sol

af1f5b54a78793ee7d741031c0832db02a9

38a807489934ba1b6088d170b1af3

IPI
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IP

ausable.sol

602905462b294fc2a763494c0aaffb26f3ba

babad7063018aaa79d1acf2b5b81

AUDIT SCOPE STABLECOIN STUDIO

ID Repo File SHA256 Checksum

IRI
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IR

escatable.sol

4882f54b27ff9fe13443ee93c8c5ba3e1b25

4d2e16af8308d4eadc7572632c97

IRC
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IR

eserve.sol

d819bb76eb36809719cdf930820db7c97b7

c97a109b5e30e04b904af5ee96444

IRM
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IR

oleManagement.sol

aa7777d2df5c8da16d38256c4ea08c63a27

a28785c689f6d2a93575a63c25a83

IRK
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IR

oles.sol

4bea2b8051bab03e348a5cf6240d719526c

9e2e874625983fc66d14cb1ecea80

ISA
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IS

upplierAdmin.sol

b67ed92e550ca874100dfe2cb3325e22fdd

9c67df2d4e6aec150daee743613d2

ITO
CertiKProject/certik-

audit-projects

contracts/extensions/Interfaces/IT

okenOwner.sol

2e87fa764c7d33db5c1c7425edc7bf4531fe

c9de3fa081f4a05a10d28855b3f2

IHR
CertiKProject/certik-

audit-projects

contracts/Interfaces/IHederaRese

rve.sol

f783798435f10cb26282d95c7b5a3c3dd27

73aea1a234c0526a90101c005af6f

AUDIT SCOPE STABLECOIN STUDIO

APPROACH & METHODS STABLECOIN STUDIO

This report has been prepared for Swirlds Labs to discover issues and vulnerabilities in the source code of the Stablecoin

Studio project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS STABLECOIN STUDIO

REVIEW NOTES STABLECOIN STUDIO

Overview

The Hedera Stablecoin Studio (used to be referred as "Stablecoin Accelerator") is a comprehensive set of tools and

resources designed to enable developers to build applications and services that make use of the stable coin, built on Hedera

Hashgraph ecosystem. With the Hedera Stablecoin Studio, developers can easily integrate the stable coin into their own

applications or create new applications or services that make use of the stable coin's unique features.

The project consists of solidity smart contracts used in the Hedera stable coin project. The Hedera Token Service (HTS)

functionality is exposed through an HTS precompiled smart contract implemented and managed by Hedera. We treat the

HTS precompiled smart contract as black box during the security auditing and assume its correctness.

The StableCoinFactory contract is responsible for creating new stable coins. It handles the deployment and initialization of

multiple smart contracts and the creation of an underlying token through the HTS precompiled contract.

Additionally, the project includes various smart contracts for stable coin operations. These contracts are located in the

"extensions" folder and include functionality such as burn, cash-in, delete, freeze/unfreeze, KYC grant/revoke,

pause/unpause, rescue, reserve management, role management, supplier admin, token ownership, and wipe. Each contract

implements specific operations related to stable coins.

In the context of the project, the Stablecoin Studio introduces multiple roles for operations like burning, pausing, and more.

Stable coins split the supply role into cash-in and burn roles, allowing separate accounts to manage these functions. The

cash-in role enables the minting and assignment of tokens to any account, either with unlimited or limited minting capabilities.

The rescue role allows accounts to manage tokens and HBAR held by the stable coin's smart contract, including transferring

tokens from the treasury account.

The project's stable coin extension implementation involves creating a new Hedera Token for each stable coin. The stable

coin proxy smart contract is deployed, which points to the HederaTokenManager logic smart contract. This proxy architecture

enables upgradability of stable coins.

Economic model

A stable coin is a type of cryptocurrency that is designed to maintain a stable value relative to a specific asset or basket of

assets. The proof of reserve of the stable coin is, an external feed that provides the backing of the tokens in real world. This

may be FIAT or other assets.

Given that the Stablecoin Studio streamlines the process of creating stable coins. The stability of each created stable coin is

independent. The proof of reserve of each stable coin requires a third party oracle to feed off-chain data to the Hedera

Hashgraph. The current implementation supports the Chainlink proof of reserve interface specification.

It is mentioned in the documentation that stable coins created with the current Stablecoin Studio should be linked to a

reserve and ensure an existing data feed is provided through Chainlink Data Feed or compatible protocols. Setting up the

reserve and data feed might also require certificates or notarizations from trusted accounting or financial firms.

REVIEW NOTES STABLECOIN STUDIO

FINDINGS STABLECOIN STUDIO

This report has been prepared to discover issues and vulnerabilities for Stablecoin Studio. Through this audit, we have

uncovered 21 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CON-09 Centralization Related Risks Centralization Major Acknowledged

HTM-01 Initial Token Distribution Centralization Major Acknowledged

RCP-03

Sum Of Amounts With Different

Decimals In Function

_checkReserveAmount()

Logical Issue Major Resolved

SCF-02
Contract Upgrade Centralization

Risk
Centralization Major Acknowledged

CKP-08
Incorrect Return Value In

_checkReserveAmount()
Volatile Code Medium Acknowledged

CON-10 Potential Failure Of Mint Logical Issue Medium Resolved

RKP-01 Admin Role Is Not Strictly Controlled Logical Issue Medium Acknowledged

SCF-01 Logical Issue About The Reserve Feed Logical Issue Medium Resolved

CKP-09 Third-Party Dependency Usage Design Issue Minor Acknowledged

CON-03 Unsafe Integer Cast Incorrect Calculation Minor Resolved

FINDINGS STABLECOIN STUDIO

21
Total Findings

0
Critical

4
Major

4
Medium

7
Minor

6
Informational

ID Title Category Severity Status

CON-04
Inappropriate Data Type For

Parameters And Fields
Volatile Code Minor Acknowledged

HRC-01 Decimals Too Small Logical Issue Minor Acknowledged

HTM-03 Pull-Over-Push Pattern Logical Issue Minor Acknowledged

RCP-04 Missing Zero Address Validation Volatile Code Minor Resolved

SAC-01
Missing Validations When Increase And

Decrease Supplier Allowance

Inconsistency,

Logical Issue
Minor Resolved

CON-05 Inconsistent Solidity Versions Language Version Informational Acknowledged

CON-07 Redundant Code Components Volatile Code Informational Partially Resolved

CON-08 Incorrect Variable Data Types Logical Issue Informational Acknowledged

CON-11 Information About generateKey() Logical Issue Informational Acknowledged

HTM-02 Unused Return Variable Logical Issue Informational Resolved

HTM-04
Information About

_hederaTokenManagerAddress
Logical Issue Informational Acknowledged

FINDINGS STABLECOIN STUDIO

CON-09 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

contracts/HederaReserve.sol: 65, 75; contracts/HederaTok

enManager.sol: 155, 216, 242; contracts/StableCoinFactory.

sol: 199, 230, 249, 262; contracts/extensions/Burnable.sol:

15; contracts/extensions/CashIn.sol: 17; contracts/extensi

ons/Deletable.sol: 14; contracts/extensions/Freezable.sol:

15, 41; contracts/extensions/KYC.sol: 15, 41; contracts/ext

ensions/Pausable.sol: 14, 36; contracts/extensions/Rescat

able.sol: 25, 63; contracts/extensions/Reserve.sol: 57, 78;

contracts/extensions/RoleManagement.sol: 15, 48; contrac

ts/extensions/Roles.sol: 161, 177, 227; contracts/extension

s/SupplierAdmin.sol: 47, 67, 85, 103, 132, 164; contracts/ex

tensions/Wipeable.sol: 21

Acknowledged

Description

In the contract Wipeable the role WIPE has authority over the functions shown in the diagram below. Any compromise to

the WIPE account may allow the hacker to take advantage of this authority to wipe a token amount from an account.

Function

Internal Calls

Internal CallsAuthenticated Role

External Calls

wipe

_getTokenAddress

_checkResponse

IHederaTokenService.wipeTokenAccount

_role

In the contract SupplierAdmin the role ADMIN has authority over the functions shown in the diagram below. Any

compromise to the ADMIN account may allow the hacker to take advantage of this authority to manage the suppliers and

their allowances.

CON-09 STABLECOIN STUDIO

Authenticated Role

Function

Function State Variables

Function

Function Internal Calls

Function State Variables

Function Internal Calls

Internal Calls

Internal Calls

_role

grantSupplierRole

increaseSupplierAllowance

decreaseSupplierAllowance

revokeSupplierRole

resetSupplierAllowance

grantUnlimitedSupplierRole

_grantSupplierRole

_supplierAllowances

_decreaseSupplierAllowance

_revokeSupplierRole

_supplierAllowances

_grantUnlimitedSupplierRole

In the contract Roles the role ADMIN_ROLE has authority over the functions shown in the diagram below. Any compromise

to the ADMIN_ROLE account may allow the hacker to take advantage of this authority to grant/revoke a role to/from an

account.

Function Internal Calls

Authenticated Role

Function Internal Calls

grantRole _grantRole

_role

revokeRole _revokeRole

In the contract RoleManagement the role ADMIN has authority over the functions shown in the diagram below. Any

compromise to the ADMIN account may allow the hacker to take advantage of this authority to grant/revoke the provided

"roles" to/from all the "accounts".

CON-09 STABLECOIN STUDIO

Function

Internal Calls

Authenticated Role

Function

Internal Calls

Internal Calls

Internal Calls

Internal Calls

Internal Calls

revokeRoles

_revokeRole

_getRoleId

_revokeSupplierRole

_role

grantRoles

_grantRole

_grantSupplierRole

_grantUnlimitedSupplierRole

In the contract Reserve the role ADMIN has authority over the functions shown in the diagram below. Any compromise to

the ADMIN account may allow the hacker to take advantage of this authority to update the reserve address.

Function State VariablesAuthenticated Role

updateReserveAddress _reserveAddress_role

In the contract Rescatable the role RESCUE has authority over the functions shown in the diagram below. Any compromise

to the RESCUE account may allow the hacker to take advantage of this authority to rescue tokens and HBARs from

contractTokenOwner to the rescuer.

CON-09 STABLECOIN STUDIO

Authenticated Role

Function

External Calls

Internal Calls

Function

External Calls

Internal Calls

_role

rescue

rescueHBAR

IHederaTokenService.transferToken

_getTokenAddress

_checkResponse

.call

In the contract Pausable the role PAUSE has authority over the functions shown in the diagram below. Any compromise to

the PAUSE account may allow the hacker to take advantage of this authority to pause the token in order to prevent it from

being involved in any kind of operation.

Function Internal Calls

Authenticated Role

Function Internal Calls

External Calls

External Calls

pause _checkResponse

_getTokenAddress

IHederaTokenService.pauseToken

_role

unpause

IHederaTokenService.unpauseToken

In the contract KYC the role KYC has authority over the functions shown in the diagram below. Any compromise to the

KYC account may allow the hacker to take advantage of this authority to grant KYC to account for the token.

CON-09 STABLECOIN STUDIO

Function Internal Calls

Authenticated Role

Function Internal Calls

External Calls

External Calls

revokeKyc _getTokenAddress

_checkResponse

IHederaTokenService.revokeTokenKyc

_role

grantKyc

IHederaTokenService.grantTokenKyc

In the contract Freezable the role FREEZE has authority over the functions shown in the diagram below. Any compromise

to the FREEZE account may allow the hacker to take advantage of this authority to freeze transfers of the token for the

account .

Authenticated Role

Function

External Calls

Function

External Calls

Internal Calls

Internal Calls

_role

freeze

unfreeze

IHederaTokenService.freezeToken

_checkResponse

_getTokenAddress

IHederaTokenService.unfreezeToken

In the contract Deletable the role DELETE has authority over the functions shown in the diagram below. Any compromise

to the DELETE account may allow the hacker to take advantage of this authority to delete the token.

CON-09 STABLECOIN STUDIO

Function

Internal Calls

Internal CallsAuthenticated Role

External Calls

deleteToken

_getTokenAddress

_checkResponse

IHederaTokenService.deleteToken

_role

In the contract CashIn the role CASHIN has authority over the functions shown in the diagram below. Any compromise to

the CASHIN account may allow the hacker to take advantage of this authority to create an amount of tokens and transfer

them to an account , increasing the total supply.

CON-09 STABLECOIN STUDIO

Function

Internal Calls

External Calls

Internal Calls

Authenticated Role

Internal Calls

Internal Calls

Internal Calls

mint

_checkResponse

IHederaTokenService.mintToken

_balanceOf

_decreaseSupplierAllowance

_transfer

_getTokenAddress

_role

In the contract Burnable the role BURN has authority over the functions shown in the diagram below. Any compromise to

the BURN account may allow the hacker to take advantage of this authority to burn an amount of tokens owned by the

treasury account.

CON-09 STABLECOIN STUDIO

Function

External Calls

Authenticated Role Internal Calls

Internal Calls

burn

IHederaTokenService.burnToken

_checkResponse

_getTokenAddress

_role

In the contract HederaTokenManager the role ADMIN has authority over the functions shown in the diagram below. Any

compromise to the ADMIN account may allow the hacker to take advantage of this authority to update token configurations.

CON-09 STABLECOIN STUDIO

Function

Internal Calls

External Calls

External Calls

External Calls

Internal Calls

Authenticated Role

Internal Calls

Internal Calls

updateToken

_getTokenAddress

IHederaTokenService.TokenKey

IHederaTokenService.updateTokenInfo

KeysLib.containsKey

_setMetadata

_updateHederaTokenInfo

_checkResponse

_role

In the contract HederaReserve the role _admin has authority over the functions shown in the diagram below. Any

compromise to the _admin account may allow the hacker to take advantage of this authority to set a new reserve amount or

a new admin address.

Authenticated Role

Function State Variables

Function State Variables
_admin

setAdmin

setAmount

_admin

_reserveAmount

CON-09 STABLECOIN STUDIO

In the contract StableCoinFactory the role _admin has authority over the functions shown in the diagram below. Any

compromise to the _admin account may allow the hacker to take advantage of this authority to add/edit/remove stable coin

contract addresses and change the admin address.

Function

Internal Calls

Function

Function State Variables

Authenticated Role

Function External Calls

editHederaTokenManagerAddress

_edit

removeHederaTokenManagerAddress

changeAdmin _admin

_admin

addHederaTokenManagerVersion _hederaTokenManagerAddress.push

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

CON-09 STABLECOIN STUDIO

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Swirlds Labs]:

Regarding the centralization of the permissions to perform any operation task on the stable coin:

From the beggining of the project, we have all assumed this permissions centralization. As in the case of any DLT, to

comprise a private key is a major risk which is well known. Using Hedera complex keys, what could fix this permission

centralization issue, was never a goal of the project. Both we and the client don't agree to use any time-lock mechanism for

token operational functionalities since most of them would need to be executed asap, rather than administrative operations

like upgrading the contracts.

These issues are related to the centralization of the permissions to perform any operational task on the token or any

administrative task on the stable coin on the basis that operations are not controlled by multi-signatures.

While the solution could be extended to leverage Hedera's native multi-sig capabilities, we assume that a token issuer will be

using a key custody provider to manage the critical processes related to minting, upgrading, etc... via external workflows

involving multiple parties

Token lock mechanisms for stable coins are inefficient, minting a token needs to be near instant in order to issue the minted

token to the receiving user as efficiently as possible. That said, such locking mechanisms can be implemented off chain via

key custodians too if required.

With regards stable coin administrative operations, the proxy admin can now to be delegated to an administrative account

that could be controlled by a key custodian, or delegated to a time-lock contract (see remediation commit).

Owner changes are also now conditioned to an Owner2Steps mechanism (see remediation commit).

Finally, for Proof Of Reserve, the contracts are an example, the process of updating the reserve value would typically be

delegated to an oracle, ensuring that the governance for reserve management is managed accordingly.

CON-09 STABLECOIN STUDIO

Issue acknowledged. I won't make any changes for the current version.

CON-09 STABLECOIN STUDIO

HTM-01 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major contracts/HederaTokenManager.sol: 84~90 Acknowledged

Description

The initialize function in the HederaTokenManager contract will initialize the stable coin from the proxy and create a

fungible token with the specified properties via the IHederaTokenService .

All the initialTotalSupply of the fungible tokens are sent to the treasury. This could be a centralization risk as the

anonymous deployer can distribute tokens without obtaining the consensus of the community. Any compromise to the

deployer account that holds undistributed tokens may allow the attacker to steal and sell tokens on the market, resulting in

severe damage to the project.

Recommendation

It's recommended the team be transparent regarding the initial token distribution process. The token distribution plan should

be published in a public location that the community can access. The team shall make enough efforts to restrict the access of

the private key. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to the private key

compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting schedule for long-term

success, and deanonymize project teams with a third-party KYC provider to create greater accountability.

Alleviation

[Swirlds Labs]:

Regarding the initial token distribution plan, the user who creates the stable coin could use the stable coin metadata to

publish such plan, so anyone could access this metadata to know the initial distribution plan.

Note that the solution is for a stable coin, vesting schedules don't apply.

These issues are related to the centralization of the permissions to perform any operational task on the token or any

administrative task on the stable coin on the basis that operations are not controlled by multi-signatures.

While the solution could be extended to leverage Hedera's native multi-sig capabilities, we assume that a token issuer will be

using a key custody provider to manage the critical processes related to minting, upgrading, etc... via external workflows

involving multiple parties

Token lock mechanisms for stable coins are inefficient, minting a token needs to be near instant in order to issue the minted

token to the receiving user as efficiently as possible. That said, such locking mechanisms can be implemented off chain via

key custodians too if required.

HTM-01 STABLECOIN STUDIO

With regards stable coin administrative operations, the proxy admin can now to be delegated to an administrative account

that could be controlled by a key custodian, or delegated to a time-lock contract (see remediation commit).

Owner changes are also now conditioned to an Owner2Steps mechanism (see remediation commit).

Finally, for Proof Of Reserve, the contracts are an example, the process of updating the reserve value would typically be

delegated to an oracle, ensuring that the governance for reserve management is managed accordingly.

Issue acknowledged. I won't make any changes for the current version.

HTM-01 STABLECOIN STUDIO

RCP-03 SUM OF AMOUNTS WITH DIFFERENT DECIMALS IN
FUNCTION _checkReserveAmount()

Category Severity Location Status

Logical Issue Major contracts/extensions/Reserve.sol: 107~108, 113~114 Resolved

Description

The internal function _checkReserveAmount() is used by the modifiers checkReserveIncrease and

checkReserveDecrease to check if the current reserve is enough for a certain amount of tokens.

Since the token decimals and the reserve decimals might not be equal. the _checkReserveAmount() will modify the input

amount or the reserve amount to make them having the same decimals. That is, if token decimals is smaller, then the token

input amount will be multiplied by the difference of the reserve decimals and the token decimals.

106 } else if (tokenDecimals < reserveDecimals) {

107 amount = amount * (10 ** (reserveDecimals - tokenDecimals));

108 }

In this case, if the input parameter less is false , the reserve amount currentReserve will be compared to

_totalSupply() + amount . The right hand side of the inequality is the sum of total token supply and input token amount.

However, here the total supply, _totalSupply() , is using token decimals, while the input amount, amount , is using the

modified reserve decimals. The summation of two amounts of different decimals will lead to the return value of

currentReserve >= _totalSupply() + amount is a lot easier to be true , since _totalSupply() is reserveDecimals

- tokenDecimals times smaller when calculating in the reserve decimals.

110 if (less) {

111 return currentReserve >= amount;

112 } else {

113 return currentReserve >= _totalSupply() + amount;

114 }

115

Since the modifier checkReserveIncrease calls _checkReserveAmount() inside, and it is applied to the CashIn.mint()

function. When the above described conditions are met, the mint() function will be processed unexpectedly, and breaks

the stability backed by the reserve assets.

Scenario

Summary of the two conditions mentioned in the description section:

1. tokenDecimals < reserveDecimals

RCP-03 STABLECOIN STUDIO

2. less == false

Proof of Concept

This proof of concept should not be used as a test in production directly, since the behavior of oracle is not simulated.

...

describe('HederaTokenManager Tests', function () {

 before(async function () {

...

 // Deploy Token using Client

 const result = await deployContractsWithSDK({

 name: TokenName,

 symbol: TokenSymbol,

 decimals: BigNumber.from(1),

 initialSupply: BigNumber.from(900),

 maxSupply: MAX_SUPPLY.toString(),

 memo: TokenMemo,

 account: operatorAccount,

 privateKey: operatorPriKey,

 publicKey: operatorPubKey,

 isED25519Type: operatorIsE25519,

 initialAmountDataFeed: BigNumber.from('1000').toString(),

 })

...

 })

...

 it('Mint should revert when reserve is not enough', async () => {

 const initialTotalSupply = await getTotalSupply(

 proxyAddress,

 operatorClient

)

 await expect(

 Mint(

 proxyAddress,

 BigNumber.from(200),

 operatorClient,

 operatorAccount,

 operatorIsE25519

)

).to.eventually.be.rejectedWith(Error)

 })

})

Recommendation

RCP-03 STABLECOIN STUDIO

Recommend properly reviewing the design, carefully handling the calculation when the decimals are different, and adding

enough test cases to cover the corner cases.

Alleviation

Fixed in commit 5dbe8450dfd835b4d34743e6644b3930f434c8fd.

RCP-03 STABLECOIN STUDIO

https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd#diff-775e019a285b669b711ed5715888879bba3777547637465aec6a4bc99c6b4340

SCF-02 CONTRACT UPGRADE CENTRALIZATION RISK

Category Severity Location Status

Centralization Major contracts/StableCoinFactory.sol: 115~123, 144~154 Acknowledged

Description

In the StableCoinFactory contract, the caller of the function deployStableCoin() will be the owner of the proxy admin of

both reserveProxy and stableCoinProxy. The owner has the authority to update the implementation contract behind the

HederaReserve and the HederaTokenManager contract.

Any compromise to the owner account may allow a hacker to take advantage of this authority and control the implementation

contract which is pointed by proxy and therefore execute potential malicious functionality in the implementation contract.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

SCF-02 STABLECOIN STUDIO

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Swirlds Labs]:

Regarding the centralization of the permissions to perform any administrative task on the stable coin's or the PoR's proxy

admin:

From the beggining of the project, we have all assumed this permissions centralization. As in the case of any DLT, to

comprise a private key is a major risk which is well known. Using Hedera complex keys, what could fix this permission

centralization issue, was never a goal of the project. In the case of stable coin administrative operations, we are going to add

that, during the creation process, users can choose an account to be the owner of stable coin's proxy admin. For example, a

time-lock contract can be set as the owner. Moreover, we are going to implemented an Owner2Steps mechanism to change

not only the stable coin's proxy admin owner, but also the factory's proxy admin owner. Therefore, stable coin management

operations have a more robust governance system. Finally, in the case of the PoR, the contracts are only an example for the

users, so we didn't consider to include this governance mechanism that users can implement by themselves.

SCF-02 STABLECOIN STUDIO

CKP-08 INCORRECT RETURN VALUE IN _checkReserveAmount()

Category Severity Location Status

Volatile

Code
Medium

contracts/extensions/CashIn.sol: 24~25; contracts/extensions/Re

serve.sol: 22~23, 93~94
Acknowledged

Description

In the contract Reserve , there is a modifier checkReserveIncrease() that can check if the current reserve is enough for a

certain amount of tokens comparing with the sum of amount plus total supply, according to the comments. The modifier calls

the internal function _checkReserveAmount() , such that if _checkReserveAmount() return false , the modifier will revert.

Otherwise, it will pass.

In the contract CashIn , the checkReserveIncrease() modifier is applied to the mint() function to check if the reserve is

enough to mint the input amount of tokens. However, if the _reserveAddress in the contract Reserve is address(0) , the

internal function _checkReserveAmount() will always return true , and the checkReserveIncrease() modifier will pass.

As a result, the CashIn.mint() function will not revert as expected.

 function _checkReserveAmount(uint256 amount, bool less) private view returns

(bool) {

 if (_reserveAddress == address(0)) return true;

 ...

 }

Recommendation

Recommend properly reviewing the design and making sure that invalid _reserveAddress values will be reverted.

Alleviation

[Swirlds Labs]:

In this case, zero address indicates that the stable coin doesn't have any Reserve contract, so no check is needed in order to

cash in tokens.

Proof of reserve is optional and may not be included at the time of deployment. As a result, if there is no reserve address,

there is nothing to check when minting

Issue acknowledged. I won't make any changes for the current version.

CKP-08 STABLECOIN STUDIO

CON-10 POTENTIAL FAILURE OF MINT

Category Severity Location Status

Logical

Issue
Medium

contracts/HederaTokenManager.sol: 186~190; contracts/extensions/Ca

shIn.sol: 44; contracts/library/KeysLib.sol: 24~37
Resolved

Description

In the updateToken() function, in case the hederaKeys contains the _SUPPLY_KEY_BIT , the treasury will be set differently

depending on the hederaKeys[i].key.delegatableContractId value.

 if (KeysLib.containsKey(_SUPPLY_KEY_BIT, hederaKeys[i].keyType))

 newTreasury = hederaKeys[i].key.delegatableContractId ==

 address(this)

 ? address(this)

 : msg.sender;

According to the logic in the KeyLibs contract, delegatableContractId will be set to stableCoinProxyAddress only in

case the publicKey is empty. Then the treasury will be stableCoinProxyAddress .

 if (publicKey.length == 0)

 key.delegatableContractId = stableCoinProxyAddress;

Looking back to the first code snippet, if the delegatableContractId is not address(this) , the treasury will be

msg.sender , which will be an EOA account. In this case, the mint() function in the CashIn contract might face transfer

failures, since the minted tokens were sent to the treasury, and the contract might not have enough balance.

 function mint(address account,int64 amount)...

{

 (int64 responseCode, ,) =

IHederaTokenService(_PRECOMPILED_ADDRESS).mintToken(currentTokenAddress, amount, new

bytes[](0));

 bool success = _checkResponse(responseCode);

 if (!((_balanceOf(address(this)) - balance) == uint256(uint64(amount))))

 revert('The smart contract is not the treasury account');

 _transfer(account, amount);//CertiK: potential failure

}

Recommendation

CON-10 STABLECOIN STUDIO

We recommend the team adding validations before calling the _transfer() function.

Alleviation

The team heeded our advice and resolved the issue in commit 5dbe8450dfd835b4d34743e6644b3930f434c8fd.

CON-10 STABLECOIN STUDIO

https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd#diff-775e019a285b669b711ed5715888879bba3777547637465aec6a4bc99c6b4340

RKP-01 ADMIN ROLE IS NOT STRICTLY CONTROLLED

Category Severity Location Status

Logical Issue Medium contracts/extensions/Roles.sol Acknowledged

Description

Unlike the OpenZeppelin AccessControl contract, there is no role admin concept in the RoleData struct.

Hence an address with the ADMIN_ROLE can grant the ADMIN_ROLE to other addresses, and the new addresses with the

ADMIN_ROLE can grant the ADMIN_ROLE to more addresses or revoke the old ADMIN_ROLE addresses.

Reference: https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/access

Recommendation

We would like to confirm with the client if the current implementation aligns with the project design.

Alleviation

[Swirlds Labs]:

We don't have role admin and this is agreed with the client.

Issue acknowledged. I won't make any changes for the current version.

RKP-01 STABLECOIN STUDIO

https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/access

SCF-01 LOGICAL ISSUE ABOUT THE RESERVE FEED

Category Severity Location Status

Logical Issue Medium contracts/StableCoinFactory.sol: 130~133 Resolved

Description

In the deployStableCoin() function, the reserveInitialAmount will be validated if it is less than the

tokenInitialSupply . However, the reserveInitialAmount is retrieved from the HederaReserve rather than the

Reserve .

 else if (reserveAddress != address(0)) {

 (, int256 reserveInitialAmount, , ,) = HederaReserve(

 reserveAddress

).latestRoundData();

According to the contract logic, the latestRoundData() from the HederaReserve is set by the admin. The reserve amount

in the Reserve is retrieved from the Chainlink reserved feed. The interface that the reserve data feed must implement for the

stable coin to be able to interact with, is defined by AggregatorV3Interface and used by Chainlink.

Recommendation

We recommend the client review the logic and fix the issue.

Alleviation

The team heeded our advice and resolved the issue in commit 5dbe8450dfd835b4d34743e6644b3930f434c8fd.

SCF-01 STABLECOIN STUDIO

https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd#diff-775e019a285b669b711ed5715888879bba3777547637465aec6a4bc99c6b4340

CKP-09 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design

Issue
Minor

contracts/extensions/CashIn.sol: 36; contracts/extensions/Reserve.s

ol: 97~98, 123~124; contracts/extensions/TokenOwner.sol: 23, 25
Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assumes their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

23 address internal constant _PRECOMPILED_ADDRESS = address(0x167);

23 (int64 responseCode, ,) = IHederaTokenService(_PRECOMPILED_ADDRESS)

24 .mintToken(currentTokenAddress, amount, new bytes[](0));

The contract TokenOwner interacts with third party contract with IHederaTokenService interface via

_PRECOMPILED_ADDRESS . The implementation of IHederaTokenService is defined in another repo and is out of the audit

scope: https://github.com/hashgraph/hedera-smart-contracts/blob/main/contracts/hts-precompile/HederaTokenService.sol

25 address private _tokenAddress;

The contract TokenOwner interacts with third party contract with IERC20Upgradeable interface via _tokenAddress .

The contract Reserve interacts with third party contract with AggregatorV3Interface via Chainlink .

97 uint8 reserveDecimals = AggregatorV3Interface(_reserveAddress)

98 .decimals();

122 if (_reserveAddress != address(0)) {

123 (, int256 answer, , ,) = AggregatorV3Interface(_reserveAddress)

124 .latestRoundData();

125 return answer;

126 }

Recommendation

CKP-09 STABLECOIN STUDIO

https://github.com/hashgraph/hedera-smart-contracts/blob/main/contracts/hts-precompile/HederaTokenService.sol

The auditors understood that the business logic requires interaction with third parties. It is recommended for the team to

constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Swirlds Labs]: We will pay attention to changes to any of these third parties contracts since these changes may fix errors or

increase security issues.

Issue acknowledged. I won't make any changes for the current version.

CKP-09 STABLECOIN STUDIO

CON-03 UNSAFE INTEGER CAST

Category Severity Location Status

Incorrect

Calculation
Minor

contracts/HederaTokenManager.sol: 276; contracts/StableCoinFactory.s

ol: 370, 372, 373, 374; contracts/extensions/Burnable.sol: 23; contracts/

extensions/CashIn.sol: 24, 30, 41; contracts/extensions/Rescatable.sol:

33, 70; contracts/extensions/Wipeable.sol: 31

Resolved

Description

Type casting refers to changing an variable of one data type into another. The code contains an unsafe cast between integer

types, which may result in unexpected truncation or sign flipping of the value.

276 uint256(uint64(amount)),

Casted expression amount has estimated range [-9223372036854775808, 9223372036854775807] but target type

uint64 has range [0, 18446744073709551615].

370 revert LessThan(uint256(reserveInitialAmount), 0);

Casted expression reserveInitialAmount has estimated range

[-57896044618658097711785492504343953926634992332820282019728792003956564819968, -1] but target type

uint256 has range [0, 115792089237316195423570985008687907853269984665640564039457584007913129639935].

372 uint256 initialReserve = uint256(reserveInitialAmount);

Casted expression reserveInitialAmount has estimated range

[-57896044618658097711785492504343953926634992332820282019728792003956564819968,

57896044618658097711785492504343953926634992332820282019728792003956564819967] but target type uint256

has range [0, 115792089237316195423570985008687907853269984665640564039457584007913129639935].

373 uint32 _tokenDecimals = uint32(tokenDecimals);

Casted expression tokenDecimals has estimated range [-2147483648, 2147483647] but target type uint32 has range

[0, 4294967295].

374 uint256 _tokenInitialSupply = uint256(uint64(tokenInitialSupply));

CON-03 STABLECOIN STUDIO

Casted expression tokenInitialSupply has estimated range [-9223372036854775808, 9223372036854775807] but

target type uint64 has range [0, 18446744073709551615].

23 uint256(uint64(amount)),

Casted expression amount has estimated range [-9223372036854775808, 9223372036854775807] but target type

uint64 has range [0, 18446744073709551615].

24 checkReserveIncrease(uint256(uint64(amount)))

Casted expression amount has estimated range [-9223372036854775808, 9223372036854775807] but target type

uint64 has range [0, 18446744073709551615].

30 _decreaseSupplierAllowance(msg.sender, uint256(uint64(amount)));

Casted expression amount has estimated range [-9223372036854775808, 9223372036854775807] but target type

uint64 has range [0, 18446744073709551615].

41 if (!((_balanceOf(address(this)) - balance) == uint256(uint64(amount))))

Casted expression amount has estimated range [-9223372036854775808, 9223372036854775807] but target type

uint64 has range [0, 18446744073709551615].

33 uint256(uint64(amount)),

Casted expression amount has estimated range [-9223372036854775808, 9223372036854775807] but target type

uint64 has range [0, 18446744073709551615].

70 uint256(uint64(amount)),

Casted expression amount has estimated range [0,

115792089237316195423570985008687907853269984665640564039457584007913129639935] but target type uint64

has range [0, 18446744073709551615].

31 uint256(uint64(amount)),

Casted expression amount has estimated range [-9223372036854775808, 9223372036854775807] but target type

uint64 has range [0, 18446744073709551615].

CON-03 STABLECOIN STUDIO

Recommendation

It is recommended to check the bounds of integer values before casting. Alternatively, consider using the SafeCast library

from OpenZeppelin to perform safe type casting and prevent undesired behavior.

Reference: https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/cf86fd9962701396457e50ab0d6cc78aa29a5ebc/contracts/utils/math/SafeCast.sol

Alleviation

[Swirlds Labs]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/hashgraph/hedera-accelerator-

stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd

[CertiK]:

Thank you for the reply. We have checked the new commit and most of the locations in this finding have been resovled.

However, we still find some locations missing the fixes:

Cash.sol 24,30,41 Rescatable.sol 70

[Swirlds Labs]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/hashgraph/hedera-accelerator-

stablecoin/commit/8a36504d6ba2f976bf9fa2a131bb14190a453de9

CON-03 STABLECOIN STUDIO

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/cf86fd9962701396457e50ab0d6cc78aa29a5ebc/contracts/utils/math/SafeCast.sol
https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd
https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/8a36504d6ba2f976bf9fa2a131bb14190a453de9

CON-04 INAPPROPRIATE DATA TYPE FOR PARAMETERS AND
FIELDS

Category Severity Location Status

Volatile

Code
Minor

contracts/HederaTokenManager.sol: 84~85; contracts/Interfaces/IHed

eraTokenManager.sol: 8~9; contracts/Interfaces/IStableCoinFactory.s

ol: 8~9; contracts/StableCoinFactory.sol: 92~93, 108~109, 135~136

Acknowledged

Description

There are several variables that are defined as integer types, but are used as unsigned types.

StableCoinFactory.deployStableCoin()

The function deployStableCoin() takes a parameter TokenStruct calldata requestedToken . The struct TokenStruct

is defined in IStableCoinFactory , and there are four fields, tokenMaxSupply , tokenInitialSupply , tokenDecimals

and reserveInitialAmount . These four fields are defined as integer types, while the ideal value ranges seem to belong to

unsigned integer types.

8 struct TokenStruct {

9 string tokenName;

10 string tokenSymbol;

11 bool freeze;

12 bool supplyType;

13 int64 tokenMaxSupply;

14 int64 tokenInitialSupply;

15 int32 tokenDecimals;

16 address reserveAddress;

17 int256 reserveInitialAmount;

18 ...

There are no input validation checks when the values pass in. The type casting from integer to unsigned integer is performed

in the most inner helper function _validationReserveInitialAmount() . Inside _validationReserveInitialAmount() ,

the input parameters reserveInitialAmount , tokenDecimals and tokenInitialSupply are explicitly casted to

unsigned integer types.

372 uint256 initialReserve = uint256(reserveInitialAmount);

373 uint32 _tokenDecimals = uint32(tokenDecimals);

374 uint256 _tokenInitialSupply = uint256(uint64(tokenInitialSupply));

HederaTokenManager.initialize()

CON-04 STABLECOIN STUDIO

Referring to documentation(https://docs.hedera.com/hedera/sdks-and-apis/sdks/smart-contracts/hedera-service-solidity-

libraries), the input parameter types of the function createFungibleToken() should be

IHederaTokenService.HederaToken memory , uint and uint . However, the struct InitializeStruct defines its fields

initialTotalSupply to be int64 and tokenDecimals to be int32 .

84 (int64 responseCode, address createdTokenAddress) = IHederaTokenService(

85 _PRECOMPILED_ADDRESS

86).createFungibleToken{value: msg.value}(

87 init.token,

88 init.initialTotalSupply,

89 init.tokenDecimals

90);

8 struct InitializeStruct {

9 IHederaTokenService.HederaToken token;

10 int64 initialTotalSupply;

11 int32 tokenDecimals;

12 ...

Recommendation

Recommend reviewing the design, fixing the inappropriate data type definitions and properly testing the contracts to ensure

compatibility for current core logics with current codebase and other dependencies.

Alleviation

[Swirlds Labs]:

In the case of the fields belonging to the struct TokenStruct, these fields have, as a target, to be the values of fields belonging

to other structs declared in the IHederaTokenService contract, that have the same types, which is a Hedera contract that is

not under our control.

In the second case, the createFungibleToken function into the IHederaTokenService has the following declaration:

function createFungibleToken(

IHederaTokenService.HederaToken memory token,

int64 initialTotalSupply,

int32 decimals)

So second and third parameters are integers with sign.

Issue acknowledged. I won't make any changes for the current version.

CON-04 STABLECOIN STUDIO

https://docs.hedera.com/hedera/sdks-and-apis/sdks/smart-contracts/hedera-service-solidity-libraries

HRC-01 DECIMALS TOO SMALL

Category Severity Location Status

Logical Issue Minor contracts/HederaReserve.sol: 10 Acknowledged

Description

The token's decimal is set too small, which could result in much loss in circulation.

 uint8 private constant _DECIMALS = 2;

Recommendation

Consider ensuring that the loss due to accuracy suffered users is within tolerable limits.

Alleviation

[Swirlds Labs]:

The HederaReserve contract is used to simulate the backing of the stable coin through fiat money, so we decided, according

to the client, to use 2 decimals, like most fiat money.

Issue acknowledged. I won't make any changes for the current version.

HRC-01 STABLECOIN STUDIO

HTM-03 PULL-OVER-PUSH PATTERN

Category Severity Location Status

Logical Issue Minor contracts/HederaTokenManager.sol: 242~243 Acknowledged

Description

In the contracts HederaTokenManager the initialize() function can receive HBARs. The HBARs are used to create

fungible token through the IHederaTokenService precompiled contract. Then if there are any leftover HBARs, the extras

will be sent back to the init.originalSender by calling the _transferFundsBackToOriginalSender() function.

The smart contract contains low-level call .call() . Since these calls bypass some of the automatic checks that Solidity

provides, like function type checks, they can introduce vulnerabilities, logic errors, or unexpected behavior.

Recommendation

Recommend not refunding extra HBARs in the way of directly sending back to the init.originalSender address, referring

to the Pull over Push Pattern.

Alleviation

[Swirlds Labs]:

Issue acknowledged. I won't make any changes for the current version.

HTM-03 STABLECOIN STUDIO

https://fravoll.github.io/solidity-patterns/pull_over_push.html

RCP-04 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Minor contracts/extensions/Reserve.sol: 61 Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

61 _reserveAddress = newAddress;

newAddress is not zero-checked before being used.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

The team acknowledged this issue and they stated this is by design:

" updateReserveAddress() can receive the zero address since this is the way to remove a reserve contract from a stable

coin. The reserve address can be set to 0 if proof of reserve is not required."

RCP-04 STABLECOIN STUDIO

SAC-01 MISSING VALIDATIONS WHEN INCREASE AND DECREASE
SUPPLIER ALLOWANCE

Category Severity Location Status

Inconsistency, Logical Issue Minor contracts/extensions/SupplierAdmin.sol: 132~175 Resolved

Description

According to the code comments, the functions increaseSupplierAllowance() and decreaseSupplierAllowance()

should validate that if the address account supplier isn't unlimited supplier's allowance. However, these two functions do

not validate the accounts and directly add/substract the _supplierAllowances .

Recommendation

We recommend the team adding the neccessary validations.

Alleviation

The team heeded our advice and resolved the issue in commit 5dbe8450dfd835b4d34743e6644b3930f434c8fd.

SAC-01 STABLECOIN STUDIO

https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd#diff-775e019a285b669b711ed5715888879bba3777547637465aec6a4bc99c6b4340

CON-05 INCONSISTENT SOLIDITY VERSIONS

Category Severity Location Status

Language

Version
Informational

contracts/extensions/Interfaces/IWipeable.sol; contracts/hts

-precompile/HederaResponseCodes.sol; contracts/hts-prec

ompile/IHederaTokenService.sol

Acknowledged

Description

The codebase contains multiple Solidity versions, which can lead to unexpected behavior, potential vulnerabilities, difficulties

in maintaining the code, and inconsistencies in the execution of the smart contract. Using different versions may also result in

increased complexity during code auditing, as different security features and bug fixes are present in different versions of the

compiler.

Versions used: 0.8.16 , >=0.4.9<0.9.0

Other directives used: ABIEncoderV2

0.8.16 is used in projects/hedera-accelerator-stablecoin/contracts/contracts/extensions/Interfaces/IWipeable.sol file.

2 pragma solidity 0.8.16;

>=0.4.9<0.9.0 is used in projects/hedera-accelerator-stablecoin/contracts/contracts/hts-

precompile/IHederaTokenService.sol file.

2 pragma solidity >=0.4.9 <0.9.0;

ABIEncoderV2 is used in projects/hedera-accelerator-stablecoin/contracts/contracts/hts-

precompile/IHederaTokenService.sol file.

3 pragma experimental ABIEncoderV2;

Recommendation

It is recommended to standardize on a single, up-to-date Solidity version throughout the codebase to ensure consistent

behavior, benefit from the latest security features, and improve maintainability.

Alleviation

[Swirlds Labs]:

Issue acknowledged. I won't make any changes for the current version.

CON-05 STABLECOIN STUDIO

Different solidity version in imported libraries from Hedera source code.

CON-05 STABLECOIN STUDIO

CON-07 REDUNDANT CODE COMPONENTS

Category Severity Location Status

Volatile

Code
Informational

contracts/HederaReserve.sol: 113~127; contracts/extens

ions/Reserve.sol: 33
Partially Resolved

Description

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test code or older

functionality.

Recommendation

Recommend removing the redundant statements for production environments and finishing the implementation when the

project is about to be test the production stage or launch.

Alleviation

[Swirlds Labs]: Issue acknowledged. I won't make any changes for the current version.

The getRoundData of HederaReserve contract cannot be removed since HederaReserve implements Chainlink

AggregatorV3Interface contract, so we need to implement this function because HederaReserve contract cannot be an

abstract contract as it must be deployed.

[CertiK]:

The team heeded our advice and resolved the issue in commit 5dbe8450dfd835b4d34743e6644b3930f434c8fd.

The function HederaReserve.getRoundData() still implemented as revert('Not implemented') .

[Swirlds Labs]: Issue acknowledged. I won't make any changes for the current version.

The Chainlink AggregatorV3Interface contract is a mock contract that helps us to demonstrate how this will work using an

oracle.

CON-07 STABLECOIN STUDIO

https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd#diff-775e019a285b669b711ed5715888879bba3777547637465aec6a4bc99c6b4340

CON-08 INCORRECT VARIABLE DATA TYPES

Category Severity Location Status

Logical

Issue
Informational

contracts/HederaReserve.sol: 13; contracts/StableCoinFactor

y.sol: 34; contracts/hts-precompile/IHederaTokenService.sol:

69

Acknowledged

Description

 int64 private constant _DFAULT_AUTO_RENEW_PERIOD = 90 days;

The state variable _DFAULT_AUTO_RENEW_PERIOD is an unit64, but it is declared as int64.

 int256 private _reserveAmount;

The state variable _reserveAmount should never be negative, but it is declared as int256 and allows negative number.

HederaReserve.setAmount()

Both the input parameter (newValue) and the state variable to be assigned (_reserveAmount) seem to belong to unsigned

integer types.

function setAmount(int256 newValue) external isAdmin {

 emit AmountChanged(_reserveAmount, newValue);

 _reserveAmount = newValue;

}

 int64 autoRenewPeriod;

The state variable autoRenewPeriod should never be negative, but it is declared as int64 and allows negative number.

Recommendation

We recommend the team use the correct data type to declare state variables.

Alleviation

[Swirlds Labs]:

CON-08 STABLECOIN STUDIO

In the case of _DEFAULT_AUTO_RENEW_PERIOD constant, its target is to populate the autoRenewPeriod property, which

has int64 type, of the Expiry struct of the IHederaTokenService contract wich is a Hedera contract that is not under our

control, while the _reserveAmount state variable is used to be the answer return value of the Chainlink latestRoundData

function, which also has int256 type.

Issue acknowledged. I won't make any changes for the current version.

CON-08 STABLECOIN STUDIO

CON-11 INFORMATION ABOUT generateKey()

Category Severity Location Status

Logical

Issue
Informational

contracts/HederaTokenManager.sol: 193~202; contracts/libr

ary/KeysLib.sol: 24
Acknowledged

Description

In the function generateKey() , the two fields inheritAccountKey and contractId of the KeyValue are not used.

According to the code comments, the inheritAccountKey means "if set to true, the key of the calling Hedera account will

be inherited as the token key". The field contractId means "smart contract instance that is authorized as if it had signed

with a key".

Furthermore, after the hederaKeys is generated, the value is passed to the hederaToken . It is not used anywhere in the

audit contracts but used in the out-of-scope dependant repo.

193 hederaToken = _updateHederaTokenInfo(

194 updatedToken,

195 hederaKeys,

196 currentTokenAddress

197);

198 int64 responseCode = IHederaTokenService(_PRECOMPILED_ADDRESS)

199 .updateTokenInfo(currentTokenAddress, hederaToken);

The same case is applied to the Expiry.

Recommendation

We would like to confirm with the client whether this implementation aligns with the project design.

Alleviation

[Swirlds Labs]:

Issue acknowledged. I won't make any changes for the current version.

Both KeyValue and HederaToken structs are declared in the IHederaTokenService interface which is a Hedera contract not

developed for the accelerator.

CON-11 STABLECOIN STUDIO

HTM-02 UNUSED RETURN VARIABLE

Category Severity Location Status

Logical Issue Informational contracts/HederaTokenManager.sol: 324 Resolved

Description

The function _updateHederaTokenInfo() declares a return variable IHederaTokenService.HederaToken memory

hederaTokenUpdated . However, this pre-declared variable is never written or used. The local variable hederaTokenInfo is

returned instead.

 function _updateHederaTokenInfo(

 UpdateTokenStruct calldata updatedToken,

 IHederaTokenService.TokenKey[] memory hederaKeys,

 address currentTokenAddress

)

 private

 returns (IHederaTokenService.HederaToken memory hederaTokenUpdated)

 {

 ...

 return hederaTokenInfo;

 }

Recommendation

It is recommended to assign return variables or write explicit return statements to avoid implicitly returning default values.

Also, if there are local variables duplicating named return variables, we recommend removing the local variables and use the

return variables instead.

Alleviation

The team heeded our advice and resolved the issue in commit 5dbe8450dfd835b4d34743e6644b3930f434c8fd.

HTM-02 STABLECOIN STUDIO

https://github.com/hashgraph/hedera-accelerator-stablecoin/commit/5dbe8450dfd835b4d34743e6644b3930f434c8fd#diff-775e019a285b669b711ed5715888879bba3777547637465aec6a4bc99c6b4340

HTM-04 INFORMATION ABOUT _hederaTokenManagerAddress

Category Severity Location Status

Logical Issue Informational contracts/HederaTokenManager.sol Acknowledged

Description

The state variable _hederaTokenManagerAddress in the contract StableCoinFactory is managed by the admin, who can

add/edit/remove the _hederaTokenManagerAddress . However, the _hederaTokenManagerAddress is not used anywhere

except in the view function getHederaTokenManagerAddress() .

Recommendation

We would like the team to elaborate more about the usage of the _hederaTokenManagerAddress .

Alleviation

[Swirlds Labs]:

_hederaTokenManagerAddress variable is used to store different versions, by its address, of HederaTokenManager

contracts, so the user creating the stable coin can be reported about all versions that can be used to create the stable coin

through this factory.

Issue acknowledged. I won't make any changes for the current version.

HTM-04 STABLECOIN STUDIO

OPTIMIZATIONS STABLECOIN STUDIO

ID Title Category Severity Status

CON-06 Unused State Variable Coding Issue Optimization Acknowledged

OPTIMIZATIONS STABLECOIN STUDIO

https://accelerator.audit.certikpowered.info/project/67b415c0-eb5b-11ed-8ade-932c9a46d14a/report/new?fid=1687914141790

CON-06 UNUSED STATE VARIABLE

Category Severity Location Status

Coding

Issue
Optimization

contracts/StableCoinFactory.sol: 30; contracts/hts-precompile/H

ederaResponseCodes.sol: 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36,

37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 58,

59, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78,

80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,

98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,

111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 12

3, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136,

137, 138, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 15

2, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,

165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 17

7, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,

190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 20

2, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,

215, 216, 217, 218, 219, 220, 221, 222, 223~224, 225, 226~22

7, 228~230, 231, 232, 233, 234, 235, 236, 237, 238~240, 241,

242, 243~244, 245~246, 247~248, 249, 250~252, 253, 254~25

5, 256~258, 259, 260, 261, 262, 263, 264, 265, 266~267, 268,

269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 28

1, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293,

294, 295, 296, 297, 298, 299~300, 301~302, 303, 304~306, 30

7, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,

320, 321, 322, 323, 324~325, 326, 327, 328, 329

Acknowledged

Description

Some state variables are not used in the codebase. This can lead to incomplete functionality or potential vulnerabilities if

these variables are expected to be utilized.

Recommendation

It is recommended to ensure that all necessary state variables are used, and remove redundant variables.

Alleviation

[Swirlds Labs]:

CON-06 STABLECOIN STUDIO

HederaResponseCodes contract is a Hedera contract but we don't need most of their response codes.

CON-06 STABLECOIN STUDIO

APPENDIX STABLECOIN STUDIO

Finding Categories

Categories Description

Language

Version

Language Version findings indicate that the code uses certain compiler versions or language

features with known security issues.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX STABLECOIN STUDIO

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER STABLECOIN STUDIO

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER STABLECOIN STUDIO

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Stablecoin Studio Security Assessment CertiK Assessed on Aug 28th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

