
 
 

Page 1 of 10 



 
 

Page 2 of 10 

Table of Contents 
Prologue .......................................................................................................................................... 3 
Unresolved and Partially Resolved Findings .................................................................................... 5 

Yellow flag: Misuse of builder design pattern ............................................................................. 6 
Yellow flag: Dearth of source code documentation .................................................................... 8 
Yellow flag: Inconsistencies in transaction validations .............................................................. 10 

 



 
 

Page 3 of 10 

Prologue 
This report is designated for external distribution, in accordance with the disclaimer below. 

Disclaimer 

This report is authorized for external distribution. This report is presented without warranty or 
guarantee of any type. 

This report touches aspects of both the code itself and the architecture. Information for the 
architecture is gleaned from the whitepaper, website, and discussions with Swirlds members. 

THIS REPORT IS UNCORRECTED AND INCOMPLETE, IS BASED ON INCOMPLETE INFORMATION, 
AND IS PRESENTED WITHOUT WARRANTY OR GUARANTY OF ANY TYPE. 

This report is a copy of a work in progress. It lists the most salient concerns that have so far 
become apparent to FP Complete after a partial inspection of the engineering work. The 
inspection is ongoing, so further concerns are likely to arise. Corrections, such as the cancellation 
of incorrectly reported issues, may also arise. Therefore, FP Complete advises against making any 
business decision or other decision based on this report. 

FP COMPLETE DOES NOT RECOMMEND FOR OR AGAINST THE USE OF ANY WORK OR SUPPLIER 
REFERENCED IN THIS REPORT. 

This report focuses on the technical implementation as provided by the project’s implementors, 
based on information provided by them, and is not meant to assess the concept, mathematical 
validity, or business validity of the project. This report does not make any assessment of the 
implementation or the project regarding financial viability, nor suitability for any purpose. 

While this assessment when complete might be described as an “audit,” no official standard 
exists for an audit of this nature. The word “audit” does not imply compliance with an accounting 
standard or other standard and is used informally here. FP Complete has not been given access 
to nor reviewed all aspects of the project and the engineering decision process underlying all the 
work. This report likely contains errors due to incomplete information as well as simple 
misunderstanding. This report may include references to problems that do not in fact exist. 
Meanwhile, the work referenced may or may not contain undetected or unreported problems. 
FP Complete has not had independent and unfettered access to all the relevant materials. Nor 
has a “whistleblower” or other process been provided such that any known problem could be 
reported and included herein. 

Some technical decisions in the engineering work were made due to historic reasons, time 
constraints, budget constraints, or other constraints. Therefore, the presence of a concern or 
“flag” in this report does not imply improper conduct or lack of skill by the implementer or 
manager or any party. 

NO ATTEMPT IS MADE OR IMPLIED TO JUDGE ANY PERSON, TEAM, COMPANY, OR OTHER PARTY. 



 
 

Page 4 of 10 

Source Material 

For this report, the FP Complete team has reviewed the Hedera Token Service, which is part of 
the Hedera code base. The source materials consist of: 

• The public documentation available at https://docs.hedera.com/guides/ 

• The hedera-services repository at https://github.com/hashgraph/hedera-services up to commit 
SHA feab04af3f4e8c18915fb42ca2cb3395c43bd885. 

Furthermore, the audit explicitly excluded: 

• Code that is not related to the Hedera Token Service (HTS) 
• Test code 
• Automatically generated code 
• DevOps, infrastructure, and network architecture 
• Technical leadership 
• Applicability for business use-cases 
• Hiring 

Considerations 

After fixes, previously identified issues have been resolved. For brevity, those issues are not 
included in this report. 

Legend 

This report classes findings into two categories: 

• Red flag Confirmed issue which should be addressed immediately 
• Yellow flag Potential problem without a clear or immediate exploit 

This report does not include past findings of the repository hedera-services raised in previous 
audits. Instead, we list unresolved and partially resolved flags that comment about production 
code of the Hedera Token Service. 

Executive Summary 

This report contains 0 red flag issues and 3 yellow flag issues. These issues remain partially 
resolved or unresolved at the time of writing. 



 
 

Page 5 of 10 

Unresolved and Partially Resolved Findings 
This section lists all partially resolved and unresolved findings. 



 
 

Page 6 of 10 

Yellow flag: Misuse of builder design pattern 

Reproducible in commit: feab04af3f4e8c18915fb42ca2cb3395c43bd885 

Impact 

The described issue decreases the maintainability and benefits the introduction of future bugs. 

Situation 

All *Usage classes follow more or less this pattern: the method newEstimate() creates an initial 
instance, other methods might exist to update it, and the get() method returns a FeeData value 
for this usage instance. For example, the class TokenUpdateResourceUsage uses this pattern. 

Issue 

In the following, we list multiple concerns with the chosen implementation 

1. Repeated calls to get() yield different FeeData: 

  Calling get() modifies the the usage instance, which is confusing as the term “get” refers to a 
read-only operation that does not modify data. As a result, two consecutive calls to get() 
return two different FeeData objects. 

2. Partially idempotent API: 

  The QueryUsage class, which also reminds of the builder pattern, contains the methods 
updateRb and updateTb which both add to the underlying value instead of replacing it. Based 
on the builder pattern and the method names themselves, both methods are expected to 
be idempotent. 

  These methods are used in *Usage classes, e.g. in TokenGetInfoUsage. Due to the nature of 
updateRB and updateTb, the methods givenCurrentName, givenCurrentSymbol, and 
givenCurrentlyUsingAutoRenewAccount are not idempotent. Calling these methods more than 
once, accidentially or not, will modify the underlying data on each call. This results in an 
inconsistent and possibly dangerous to use API. 

3. Negative values of Rbs are possible 

  The method TokenAssociatedUsage::get is defined as: 

  public FeeData get() { 
  var op = this.op.getTokenAssociate(); 
  addAccountBpt(); 
  op.getTokensList().forEach(t -> addAccountBpt()); 
  novelRelsLasting(op.getTokensCount(), ESTIMATOR_UTILS.relativeLifetime(this.op, currentExpiry
)); 

https://github.com/hashgraph/hedera-services/tree/feab04af3f4e8c18915fb42ca2cb3395c43bd885
https://github.com/hashgraph/hedera-services/tree/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token
https://github.com/hashgraph/hedera-services/tree/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/fees/calculation/token/txns/TokenUpdateResourceUsage.java
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/QueryUsage.java
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/QueryUsage.java
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenGetInfoUsage.javas
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenGetInfoUsage.javas
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenAssociateUsage.java#L51-L57
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenAssociateUsage.java#L51-L57


 
 

Page 7 of 10 

  return usageEstimator.get(); 
} 

  In case a call to this method is not preceded by a call to givenCurrentExpiry, Rbs is set to a 
negative value, which seems undesired. Since its initial value is zero, the method 
relativeLifetime() function will return a negative value. A related cause can be the variable 
expiry, which is optional but considered mandatory by the calculation. 

  Added documentation about the call sequence, or a fix of the code, are advisable. 

4. Unnecessary multi-step builders: 

  Many *Usage implementations do not take parameters which would customize the FeeData 
before it is returned from get. In these implementations, a call to newEstimate is effectively 
always directly followed by a call to get, which makes the builder pattern obsolete. Instead, 
a single method creating FeeData could be favored to avoid unnecessary intermediate 
steps. For example, this applies to TokenRevokeKycUsage.java, TokenMintUsage.java, and 
TokenAssociateResourceUsage.java. 

5. Complexity of nested builders: 

  Nesting builders seems to over-complicate the code. For example, the class 
TokenAssociateUsage is a builder that extends from TxnUsageEstimator, which is also a 
builder, which itself uses the builder UsageEstimate in its get method. 

6. Unclear intentions and suspicious code: 

  There are places in the code that look like this: 

  public FeeData get() { 
  addAccountBpt(); 
  addAccountBpt(); 
  return usageEstimator.get(); 
} 

  In this extract from TokenFreezeUsage.java#L45, addAccountBpt is called twice so that 
usageEstimator is incremented twice with AMOUNT_REPR_BYTES. When reading this code, 
it is unclear if the double-addition is intended or is a copy-paste mistake. More 
documentation or a less ambiguous implementation would clarify the situation. Other 
examples of this issue are: TokenUnfreezeUsage.java#L45, TokenRevokeKycUsage.java#L45, 
and TokenWipeUsage.java#L45. 

https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/EstimatorUtils.java#L38
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenRevokeKycUsage.java
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenMintUsage.java
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenAssociateUsage.java
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenAssociateUsage.java
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenFreezeUsage.java#L45
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenUnfreezeUsage.java#L45
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenRevokeKycUsage.java#L45
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hapi-fees/src/main/java/com/hedera/services/usage/token/TokenWipeUsage.java#L45


 
 

Page 8 of 10 

Yellow flag: Dearth of source code documentation 

Reproducible in commit: feab04af3f4e8c18915fb42ca2cb3395c43bd885 

Impact 

This may lead to difficulty in establishing context around the undocumented code for further 
development and maintenance. 

Issues 

Using the PMD tool, by its CLI, we generated a report for missing Javadocs: 

❯ pmd -d hapi-fees -f text -R ./javadoc-ruleset.xml > comments-required.txt 

where, javadoc-ruleset.xml is the following: 

<?xml version="1.0"?> 
 
<ruleset name="Missing Javadoc" 
    xmlns="http://pmd.sourceforge.net/ruleset/2.0.0" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://pmd.sourceforge.net/ruleset/2.0.0 https://pmd.sourceforge.io/ruleset_2_0_0
.xsd"> 
 
    <description> 
        Missing Javadoc 
    </description> 
 
    <rule ref="category/java/documentation.xml/CommentRequired"> 
        <properties> 
            <property name="methodWithOverrideCommentRequirement" value="Ignored" /> 
            <property name="accessorCommentRequirement" value="Ignored" /> 
            <property name="classCommentRequirement" value="Required" /> 
            <property name="fieldCommentRequirement" value="Required" /> 
            <property name="publicMethodCommentRequirement" value="Required" /> 
            <property name="protectedMethodCommentRequirement" value="Required" /> 
            <property name="enumCommentRequirement" value="Required" /> 
            <property name="serialVersionUIDCommentRequired" value="Ignored" /> 
            <property name="serialPersistentFieldsCommentRequired" value="Ignored" /> 
        </properties> 
    </rule> 
 
</ruleset> 

This reports 165 violations of the rule CommentRequired with test sources excluded. This report 
can be found in the asset comments-required-hapi-fees.txt 

https://github.com/hashgraph/hedera-services/tree/feab04af3f4e8c18915fb42ca2cb3395c43bd885
https://pmd.github.io/latest/index.html
https://pmd.github.io/latest/pmd_rules_java_documentation.html#commentrequired


 
 

Page 9 of 10 

When we run this analysis on a larger, project-wide scope (hedera-services), 20073 violations are 
reported (test sources excluded). This report can be found in the asset comments-required-hedera-
services.txt 

This number is directly indicative of significant elements of source code, such as, definitions of 
classes, methods, functions, arguments, variables and others, not being accompanied by any 
documentation. This can degrade the quality of further development and maintenance of the 
project. 

Recommendation 
1. Decrease the number of violations reported by PMD by documenting more of the exiting 

source code. 
2. Proactively document source code alongside new development. 

https://pmd.github.io/latest/index.html


 
 

Page 10 of 10 

Yellow flag: Inconsistencies in transaction validations 

Reproducible in commit: feab04af3f4e8c18915fb42ca2cb3395c43bd885 

Impact 

The described issue decreases the maintainability and can slightly decrease the performance. 

Issues 

We collect a few issues that concern token transactions, in particular their transition logic and 
validations. 

1. The TokenCreateTransitionLogic checks if the expiry is after the transaction consensus time 
by performing an inline check. In contrast, TopicUpdateTransitionLogic, L.154 and 
CryptoUpdateTransitionLogic, L.149 use the OptionValidator::isValidExpiry method for the 
identical check. The utility method should be used consistently. 

2. Validation logic is spread across *TransitionLogic classes and the HederaTokenStore. For 
instance, the check for a missing token (outcome: MISSING_TOKEN) is duplicated in 
TokenUpdateTransitionLogic::transitionFor and HederaTokenStore::update. 

3. The TokenCreateTransitionLogic validates both expiry and autorenew as part of the pre-check 
in the validate() method. Neither of these properties is validated in 
TokenUpdateTransitionLogic::validate(). However, the TokenUpdate logic relies on 
HederaTokenStore::update to check if a new expiry value is set to a time that is later than the 
current token’s expiry. 

4. The previous point also introduces the problem of different times of validation: 
TokenCreateTransitionLogic performs validation as pre-checks in the validate() method, while 
TokenUpdateTransitionLogic results in the validation being performed at post-consensus 
execution time. 

https://github.com/hashgraph/hedera-services/tree/feab04af3f4e8c18915fb42ca2cb3395c43bd885
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/token/TokenCreateTransitionLogic.java#L182
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/consensus/TopicUpdateTransitionLogic.java#L154
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/consensus/TopicUpdateTransitionLogic.java#L154
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/crypto/CryptoUpdateTransitionLogic.java#L149
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/crypto/CryptoUpdateTransitionLogic.java#L149
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/token/TokenUpdateTransitionLogic.java#L93
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/tokens/HederaTokenStore.java#L492
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/token/TokenCreateTransitionLogic.java#L177-L185
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/token/TokenCreateTransitionLogic.java#L177-L185
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/token/TokenUpdateTransitionLogic.java#L173
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/tokens/HederaTokenStore.java#L515
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/tokens/HederaTokenStore.java#L515
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/token/TokenCreateTransitionLogic.java#L177-L185
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/txns/token/TokenCreateTransitionLogic.java#L177-L185
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/tokens/HederaTokenStore.java#L515-L523
https://github.com/hashgraph/hedera-services/blob/feab04af3f4e8c18915fb42ca2cb3395c43bd885/hedera-node/src/main/java/com/hedera/services/tokens/HederaTokenStore.java#L515-L523

	Prologue
	Disclaimer
	Source Material
	Considerations
	Legend
	Executive Summary

	Unresolved and Partially Resolved Findings
	Yellow flag: Misuse of builder design pattern
	Impact
	Situation
	Issue

	Yellow flag: Dearth of source code documentation
	Impact
	Issues
	Recommendation

	Yellow flag: Inconsistencies in transaction validations
	Impact
	Issues



